217 research outputs found

    Electrical detection of spin state switching in electromigrated nanogap devices

    Get PDF
    Spin crossover is an effect shown in some transition metal complexes where the spin state of the molecule undergoes a transition from a low spin to a high spin state via the application of light, pressure or a change in temperature. This behaviour makes these complexes an attractive candidate to form electronic molecular-scale switches as the electrical resistance of the compound differs between the two spin states. Although the spin crossover effect is commonly studied in its bulk form, the integration of a single molecule into a solid-state device while maintaining the magnetic bi-stability is highly desirable, but remains challenging. This is not only due to difficulties in capturing a single molecule between electrodes and making electrical connections but it is also due to the strong coupling effects imparted on the molecule by the high-density metallic states of the electrodes that can prevent the spin transition from occurring.In recent years there have been many attempts at studying spin crossover complexes at a single molecule level. Many of these have used scanning tunneling microscopy or break junction techniques. While these studies have highlighted the unique and promising electronic properties of these compounds, these techniques are unsuitable for real world devices. This thesis demonstrates a means to make electrical contact to single or small numbers of molecules between gold electrodes fabricated using a bilayer nanoimprint lithography and a feedback controlled electromigration method. This method, enabling high throughput and low-cost fabrication is potentially suitable for scaling to large area planar devices and as such may be used for commercially producing molecular devices.To validate the quality of the nanogaps, devices containing self-assembled monolayers of benzenethiol were first studied. The shape and magnitude of I-V curves measured on nanogap devices containing the benzenethiol monolayers are in good agreement with previously published work using similar molecules in mechanically controlled break junctions. The resulting I-V characteristics were analyzed using the single level resonant tunneling model as well as transition voltage spectroscopy and are consistent with transport through molecular junctions in which the benzenethiol molecules are - stacked. These highly conducting molecular junctions may have potential uses for ā€œsoftā€ coupling to sensitive target molecules.Following validation of the molecular nanojunction fabrication and measurement process, the experimental work shifted to studying electronic transport through spin crossover complexes with a focus on Schiff-base compounds that are specifically tailored for surface deposition. In the case of measurements made on the bulk compound, a sharp spin transition centered at a temperature around 80 K was observed, while a shift to lower temperatures was found for thin films of the complex. In contrast, nanojunction devices containing single molecules displayed very different behaviour, with distinct and reproducible telegraphic-like switching between two resistance states when cooled below 160 K. These two states are attributed to the two different spin states of the complex. The presence of these two resistive states indicates that the spin crossover is preserved at the single molecule level and that a spin-state dependent tunneling process is taking place. Interestingly, in some cases a multi-level switching behaviour is detected with four possible conductance states. This behaviour is attributed to the presence of two spin crossover molecules in the nanogap

    Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration

    Get PDF
    Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by Ļ€-stacking

    The Motoring Lobby in New Zealand, 1898ā€“1930

    Get PDF
    This article examines how motoring organisations in New Zealand sought to influence local and national government during the first three decades of their existence. It shows that motor clubs formed alliances with other pressure groups which changed according to the issues at stake. These allies included local government bodies, urban and provincial promotional leagues, chambers of commerce, tourist organisations and representatives of other road users. Automobile associations sought to gain a favourable public image for motoring through the press, both newspapers and their own publications, as well as by self-policing and charitable activity. This article looks at the lobbying of parliamentarians regarding legislative measures that affected motorists such as roading, taxation and regulation. It concludes that motoring organisationsā€™ demands in general received a favourable response so long as there were no major implications for government revenue

    Sugardale Marketing Research - Group 5

    Get PDF
    Sugardale research findings for group

    Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates

    Get PDF
    BACKGROUND: Bacillus anthracis and Bacillus cereus can usually be distinguished by standard microbiological methods (e.g., motility, hemolysis, penicillin susceptibility and susceptibility to gamma phage) and PCR. However, we have identified 23 Bacillus spp. isolates that gave discrepant results when assayed by standard microbiological methods and PCR. We used multiple-locus variable-number tandem repeat analysis (MLVA), multiple-locus sequence typing (MLST), and phenotypic analysis to characterize these isolates, determine if they cluster phylogenetically and establish whether standard microbiological identification or PCR were associated with false positive/negative results. RESULTS: Six isolates were LRN real-time PCR-positive but resistant to gamma phage; MLVA data supported the identification of these isolates as gamma phage-resistant B. anthracis. Seventeen isolates were LRN real-time PCR-negative but susceptible to gamma phage lysis; these isolates appear to be a group of unusual gamma phage-susceptible B. cereus isolates that are closely related to each other and to B. anthracis. All six B. anthracis MLVA chromosomal loci were amplified from one unusual gamma phage-susceptible, motile, B. cereus isolate (although the amplicons were atypical sizes), and when analyzed phylogenetically, clustered with B. anthracis by MLST. CONCLUSION: MLVA and MLST aided in the identification of these isolates when standard microbiological methods and PCR could not definitely identify or rule out B. anthracis. This study emphasized the need to perform multiple tests when attempting to identify B. anthracis since relying on a single assay remains problematic due to the diverse nature of bacteria

    Racism as a determinant of health: a protocol for conducting a systematic review and meta-analysis

    Get PDF
    Background Racism is increasingly recognized as a key determinant of health. A growing body of epidemiological evidence shows strong associations between self-reported racism and poor health outcomes across diverse minority groups in developed countries. While the relationship between racism and health has received increasing attention over the last two decades, a comprehensive meta-analysis focused on the health effects of racism has yet to be conducted. The aim of this review protocol is to provide a structure from which to conduct a systematic review and meta-analysis of studies that assess the relationship between racism and health. Methods This research will consist of a systematic review and meta-analysis. Studies will be considered for review if they are empirical studies reporting quantitative data on the association between racism and health for adults and/or children of all ages from any racial/ethnic/cultural groups. Outcome measures will include general health and well-being, physical health, mental health, healthcare use and health behaviors. Scientific databases (for example, Medline) will be searched using a comprehensive search strategy and reference lists will be manually searched for relevant studies. In addition, use of online search engines (for example, Google Scholar), key websites, and personal contact with experts will also be undertaken. Screening of search results and extraction of data from included studies will be independently conducted by at least two authors, including assessment of inter-rater reliability. Studies included in the review will be appraised for quality using tools tailored to each study design. Summary statistics of study characteristics and findings will be compiled and findings synthesized in a narrative summary as well as a meta-analysis. Discussion This review aims to examine associations between reported racism and health outcomes. This comprehensive and systematic review and meta-analysis of empirical research will provide a rigorous and reliable evidence base for future research, policy and practice, including information on the extent of available evidence for a range of racial/ethnic minority group

    Printed and flexible organic and inorganic memristor devices for non-volatile memory applications

    Get PDF
    The electronics market is highly competitive and driven by consumers desire for the latest and most sophisticated devices at the lowest cost. In the last decade there has been increasing interest in printing electronic materials on lightweight and flexible substrates such as plastics and fabrics. This not only lowers fabrication and capital costs but also facilitates many new applications, such as flexible displays and wearable electronics. The printing of computer memory is also desirable since many of these applications require memory to store and process information. In addition, there is now an international effort to develop new types of computer memory that consume ultra-low levels of power. This is not only to lower energy usage worldwide, which is important for reducing CO2 emissions, but it also enables a longer period between the re-charging of devices such as mobile phones, music players and fitness bands. Memory that is non-volatile is an obvious choice since it does not consume power to retain information like conventional SRAM and DRAM. Memristors (or memory resistor) are a new type of memory that are intrinsically non-volatile in nature. Their simple two-terminal architecture, easy method of fabrication and low power consumption means they have received much attention from both the research community and industry. Devices with the lowest fabrication costs are made from organic or hybrid (organicā€“inorganic) composite materials because of the ability to use low-cost solution processing methods with the advantages of large area deposition under vacuum-free and room temperature ambient conditions. Memristors have excellent device properties, including a large resistance Off/On ratio (up to 5 orders of magnitude), fast switching speeds (less than 15 ns), long endurance (over 1012 cycles), long data storage retention time (āˆ¼10 years) and high scalability down to nanoscale dimensions. In this article we review progress in the field of printed and flexible memristor devices and discuss their potential across a wide range of applications

    Large dopant dependence of the current limiting properties of intrinsic conducting polymer surge protection devices

    Get PDF
    New two terminal surge protection devices based on intrinsic conducting polymers are demonstrated to be strongly affected by the dopant molecule type. Thermogravimetric analysis combined with currentā€“voltage studies show a causal link between the dopant molecule, moisture content and the current limiting capability of the devices. Polyaniline thin-films with high moisture content produce devices with current saturation and foldback effects at high applied voltages while low moisture content films exhibit no current rectification and instead demonstrate decreasing resistivity with increasing voltage. Polyaniline doped with sulfuric acid (H2SO4) exhibited the largest moisture content and surge protection devices built with this material produced for the first time negative differential resistance under ambient conditions. A further improvement was made upon this through surface engineering of the interface between the polymer and electrodes using self-assembled monolayers

    Statistical analysis of spin switching in coupled spin-crossover molecules

    Get PDF
    We study the switching behavior of two spin-crossover molecules residing in a nanojunction device consisting of two closely spaced gold electrodes. The spin states are monitored through a real-time measurement of the resistance of the junction. A statistical analysis of the resistance values, the occupation probabilities, and the lifetimes of the respective spin states shows that the two spin-crossover molecules are coupled to each other. We extract the parameters for a minimal model describing the two coupled spin-crossover molecules. Finally, we use the time dependence of factorial cumulants to study the impact of interactions between the two spin-crossover molecules on the switching dynamics
    • ā€¦
    corecore